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Abstract 

A smooth surface reconstruction by using the non-uniform distribution of the data points constitutes a 

major challenge in the technique involving reconstructing surfaces in the field of reverse engineering. In 

this study, the Delaunay triangulation process was selected as the method was not involve the deletion 

of the sample data points and could preserve the original surface topology. The study also focused on 

developing a smooth surface using two processes, i.e., the derivative estimation and the surface 

interpolation using the cubic Bezier triangular patch. We estimated the 2nd order partial derivatives by 

applying the least square minimization technique wherein the process was seen to decrease the errors 

between the estimated and the actual values. Thereafter, we interpolated the surface with the help of 

the cubic Bezier triangular patch. In this study, rather than using the results generated by multiple 

subplots in the MATLAB programming (MATLAB, R2015), the result was represented by using the MATLAB 

Graphical User Interface (GUI) function for the development of an interface for all the algorithms. Our 

results show a comparison of the interpolating surface generated by 6 test functions. 

Keywords: Delaunay triangulation; Triangular patch; Non-uniform; Partial derivative; Least square 

minimization; 

 

 

1.0 INTRODUCTION 

 
Reverse engineering constitutes a method of 

developing and reproducing a Computer-Aided 

Design (CAD) model that resembles the actual 

object. This technique is generally used in cases 
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when the actual design data is unavailable or is lost, 

or during the inspection and determining the quality 

of a manufactured product, improving the limitations 

of any product and also for creating the anatomical 

objects or relevant structures in the medical imaging 

field. Two processes are involved in this technique, 

i.e., the data acquisition and the surface 

reconstruction of a 3D model [1,2]. The data 

acquisition consists of a data set of cloud points 

which are divided into unstructured and structured 

data. The surface reconstruction is an automated 

process of generating 3D surfaces from the cloud 

data of the actual object which has been obtained 

from the 3D scan [3]. 

 

As already mentioned, [4], the data points which 

have been obtained from the scanned objects or 

structures are generally the unstructured points and 

their surface reconstruction can be complex as there 

is little or no information regarding the connectivity. 

Also, the surface reconstruction derived from the 

scanned objects, is faced with a noisy data, 

misaligned involving multiple scans, non-linear 

distortions and the lack of features that can lead to 

an faulty alignment of the scans and also some 

missing data when the surface scan could not be 

obtained, thereby resulting in a gap in the 

subsequent data set.  

 

There is a need to find the best method to 

represent the smooth surface of  scattered data 

obtained from 3D scanning and could preserve the 

original surface topology. There are several 

techniques have been used for the surface 

reconstruction like the Radial Basis Function (RBF), the 

Moving Least Square (MLS) and the Delaunay 

triangulation technique. Out of these, the RBF is a 

linear combination of the radially symmetrical basis 

function and it was used for defining the points which 

are not limited to the standard grid and involves no 

need for defining the mesh of the patches [5]. The 

RBF technique is applied in the case of 

reconstructing incomplete surfaces which consist of 

holes, but, it also has certain limitations. This 

methodology can only be used for smooth surfaces, 

is limited in the hole sizes and the identification of the 

holes requires a customer interaction [6]. As the RBF is 

very ill-conditioned for processing a huge data set, it 

had led to the introduction of the single and the 

multilevel quasi-interpolation that uses the 

Compactly Supported RBF (CS-RBF) [7]. However, it 

was seen that the CS-RBF could not handle the data 

set with sharp features. 

On the other hand, the MLS is seen to be a 

meshless technique, which allows a local change in 

the fit results vary with the x value. This method can 

handle the hole-filling issue. One example was shown 

in [8], wherein the MLS was applied to many 3D 

polygonal models that contained holes, non-

manifold edges, self-intersections, along with other 

such defects. Generally, the least square technique 

does not have to study all of the data points; 

however, the MLS examines all the points, thus 

proving that the MLS can provide a much surface fit 

and a better curve using the interpolating conditions 

[9]. 

 

The method use in this research known as 

Delaunay triangulation method is a very popular 

technique which is used for generating the triangle 

meshes, wherein the vertices are made up of the 

sample data points. This process uses the piecewise 

technique with the triangular patches, which are 

triangles in the 2D or tetrahedrals in the 3D. A 

triangulation containing a set of data points is made 

up of the vertices, edges (that connect the 2 

vertices) and the faces (that connect 3 vertices). The 

triangulation helps in maximising the minimal value of 

the angles in the triangle and can avoid the skinny 

triangles [10].  This technique consisted of a property, 

wherein the circle which circumscribed the 3 vertices 

of the triangle had no more vertices. This has been 

explained in Fig. 1, where it is seen that the circle, 1C  

does not contain the vertex, 4v , and the circle, 2C ,  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Circumcircle property of Delaunay 

triangulation 

 

Several techniques are available for the 

construction of the Delaunay triangulation for the 

dispersed data points like the randomised 

incremental insertion algorithm [11], incremental 

construction algorithm [12,13], the sweep-line 

algorithm [14,15], the circle-sweep algorithm [16], 

flipping algorithm [17], and the divide and conquer 

algorithm [18]. We have use the built-in function of 

Delaunay triangulation in MATLAB as it was easily 

understood and was simple. 

 

For obtaining the smooth surface, the partial 

derivatives present at the triangle vertices had to be 
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estimated and then the triangular patches 

generated were interpolated with the help of the 

Cubic Bezier triangular patch [19]. As the partial 

derivatives for the triangle vertices for the midpoint of 

every side are generally not available, they have to 

be approximated. The derivative vertices can be 

approximated by the help of the neighbouring data 

whereas the edge normal derivatives apply the 

normal derivatives from the 2 vertices that are linked 

to the triangle edge. The derivative approximation is 

carried out by using either of the 2 techniques, i.e., 

the convex combination [20] or the least square 

minimisation [21] technique. In our study, we have 

used the least square minimisation technique with 

the best fit for the quadratic surfaces for estimating 

the 2nd order partial derivatives for the vertices as it 

could be easily understood and implemented and 

used for a better tangential continuity instead of the 

convex combination technique that is only used for 

the 1st order derivatives. 

 

In this study motivation of the research is due to 

the scattered data obtained from 3D scanning 

Delaunay triangulation method is the best method to 

represent the surface since it goes through all points 

,it does not involve the deletion of the sample data 

points and could preserve the original surface 

topology. The objective of this study is to produced a 

smooth surface by using cubic Bezier triangular 

patch by using six test data functions and represent 

in GUI MATLAB. 

 

 

2.0 EXPERIMENTAL 
 

In this study, we used the technique of estimating the 

partial derivatives at every control point and the 

interpolation of the surface using the Cubic Bezier 

Triangular patch as in Fig. 2. General flow of our 

research study was explained further in the next 

subtopic below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow chart of this research 

 

 

Triangulate domain data using Delaunay 

Triangulation 

 

In this research, the built-in Delaunay triangulation 

in MATLAB 2015 was used to construct the triangular 

patch. The scattered data point was connected and 

represent in Fig.4 below. 

 

Estimate 2nd order partial derivatives of z with 

respect to x and y at each of (x, y) data points by 

using Least Square Minimization Method 

  

The least square minimisation technique, which 

was used earlier [21], has been applied in our study. 

This technique minimises the errors between the 

estimated and the actual values and determines the 

unknown coefficients after solving the Gaussian 

elimination. The best fit of the quadratic surfaces in 

the least square minimisation technique has been 

described in Eq. 1 as follows: 

 

feydxcybxyaxyxf  22),(
            

(1) 

 

After substituting the values of kPPP ,..,, 10 and 

kzzz ,..,, 10 , we can obtain the linear system for BAx   

Input 2D 

scattered 

data 

Estimate 2nd order partial derivatives of z 

with respect to x and y at each of (x, y) 

data points by using Least Square 

Minimization Method 

Triangulate domain data 

using Delaunay 

Triangulation 

Interpolate the surface using 

Cubic Bezier Triangular patch 

End 
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The values for the coefficients of x are obtained by 

substituting the A and B values from Eq. 2 in the 

following equation: 

                                BAAAx TT 1
                              (3)                                                    

 

Using the value for x obtained in Eq. 3, we can 

determine the 1st partial derivative, written as:                                              

dbyax
dx

df
 2     ecybx

dy

df
 2

              

(4) 

 

The second order derivatives are:  

        

a
dxx

df
2          c

dyy

df
2        b

dxy

df


               

(5)

           
 

Interpolate the surface using Cubic Bezier 

Triangular patch 

 

Bezier Triangular Patch 

 

The Bernstein polynomials for the degree, n, for 

the triangle, T, are defined using the barycentric 

coordinates ),,( wvu as follows:  

 

kjin
kji wfu

kji

n
wvuB

!!!

!
),,(,, 

                    

(6) 

This is seen to form a base for the bivariate 

polynomials of the degree. 

 

The parametric equation in the case of the triangular 

Bernstein Bezier patch, described below, uses Eq. 9 in 

the form of the Bernstein polynomial. 
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Wherein, the coefficients kjib ,,  are known as the 

Bezier control points for w)v,p(u, . We have used the 

cubic-Bezier triangular patch [22, 23], described in 

Eq. 11 as follows:
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Where u,v,w are the barycentric coordinates and 

have a condition of 1 wvu and 
 

0,, wvu
 

 

Barycentric Coordinates 

A point, P, present in the plane, could be 

represented as the linear combination of 3 vertices of 

the triangle, 21,VV and 3V as shown in Fig. 3 below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Barycentric coordinate 

 

      
),(),(),(),( 332211

321

yxwyxvyxuyx

wVvVuVP





         

(9) 

 

                           

ywyvyuy

xwxvxux

wvu







322

321

1

                        (10)                                                                                                          

 

Wherein,  wvu ,,  are the barycentric coordinates of P 

for the three vertices, 21,VV and 3V ; while 1 wvu is 

seen to be equivalent to the linear system, bAx  , 

wherein: 

                     (11) 

     

 

After solving for the coordinates using the Cramer’s 

rule, we obtain: 
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was the determinant for A, and could be 

represented as follows:  

 

312312133221 yxyxyxyxyxyx   
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3.0 RESULTS AND DISCUSSION 
 

A test domain with 36 data points has been used 

earlier [24]. The points have been triangulated with 

the help of the Delaunay triangulation technique. All 

these coordinates of the 36 points are tabulated in 

Table 1 below: 

 

 

Table 1.The coordinates of the 36 Data points 

No Coordinates No Coordinates 

X y x y 

1 0.00 0.00 19 0.80 0.85 

2 0.50 0.00 20 0.85 0.65 

3 1.00 0.00 21 1.00 0.50 

4 0.15 0.15 22 1.00 1.00 

5 0.70 0.15 23 0.50 1.00 

6 0.50 0.20 24 0.10 0.85 

7 0.25 0.30 25 0.00 1.00 

8 0.40 0.30 26 0.25 0.00 

9 0.75 0.40 27 0.75 0.00 

10 0.85 0.25 28 0.25 1.00 

11 0.55 0.45 29 0.00 0.25 

12 0.00 0.50 30 0.75 1.00 

13 0.20 0.45 31 0.00 0.75 

14 0.45 0.55 32 1.00 0.25 

15 0.60 0.65 33 1.00 0.75 

16 0.25 0.70 34 0.19 0.19 

17 0.40 0.80 35 0.32 0.75 

18 0.65 0.75 36 0.79 0.46 

 

To illustrate the technique of producing smooth 

surface, the six well-defined test functions [21], as 

described in Eq. 12 – Eq. 17 was used. The six different 

test functions was used since it has been used 

regularly by other researcher when involving testing 

for surface reconstruction. 

 

1. Franke’s exponential function 

 

       
 

     

   

    22

22

222

79494

3979

10

19

49

19

4

2929

1

200500

750750














 














 

















 






yx

yx

yxyx

e.e.

e.e.x,yF

 

                                                                     
  

(12) 

 

2. Cliff function 
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3. Saddle function 
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4. Gentle function
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5. Steep function
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6. Sphere function
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Fig. 4. The Delaunay triangulation for the 36 data points 

 

 

 

 
              a                                             b     c 

 
d                                                        e                                                                    f 

Fig. 5. The triangular representation in 3D and the mesh for 6 test functions in GUI (MATLAB 2015) which are (a) 

Franke’s Exponential, (b) Cliff, (c) Saddle, (d) Gentle,(e) Steep and the (f) Sphere function.
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a     b     c 

   
                              d                                                            e                                                            f 

 

Fig. 6. The triangular representation in 3D and the contour for 6 test functions in GUI (MATLAB 2015) 

which are (a) Franke’s Exponential, (b) Cliff, (c) Saddle, (d) Gentle,(e) Steep and the (f) Sphere function. 

 
Fig. 7. Interface of the GUI 
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We used the MATLAB programme (MATLAB, 

R2015) for coding the surface results. In this study, 

instead of displaying the results of multiple subplots, 

we used the Graphical User Interface (GUI) function 

of MATLAB, for developing the algorithm interface. A 

GUI refers to a graphical display present in either one 

or many windows containing the controls called as 

the components which enable the user to carry out 

many interactive tasks. The GUI user does not need 

to create any kind of script or typing of any 

commands at the command line for carrying out 

these tasks. The different GUI components are 

toolbars, menus, push buttons, list boxes, radio 

buttons, and sliders. The GUIs, which have been 

created with the help of the MATLAB tools, are able 

to carry out any computation, can read or write the 

data files, and communicate with the other GUIs and 

the data is displayed in the form of tables or plots.  

 

In Fig. 7, we have shown the GUI interface. The 2-

axis plot is easier for displaying the results. The 11 

push-button was used for displaying the surf, 

triangular mesh, mesh and the contour, for all 6 test 

functions. Finally, using the clear axis button enabled 

the user to erase the earlier results for displaying the 

subsequent plot properly.  

 

Fig. 4 represents the Delaunay triangulation 

method for the 36 data points which were generated 

from Table 1 using the GUI function of the MATLAB 

R2015. We used an incremental construction 

algorithm for constructing the triangulation. Thus, it 

could follow the triangulation properties where the 

circle circumscribed the 3 vertices in the triangle and 

did not consist of any additional vertices.  Also, the tri-

plot push button present in the GUI represented the 

triangular plot in the case of the Delaunay 

triangulation method for a 2D surface. 

 

Fig. 5 showed the triangular representation in 3D 

and the mesh for the 6 test functions. All the test 

functions were obtained using Eq. 12 - Eq. 17. The 

triangular representation has been described in the 

axis 1 with the help of 6 push buttons, namely 

trimesh_za, trimesh_zb, trimesh_zc, trimesh_zd, 

trimesh_ze and trimesh_zf. Also, the mesh results have 

been displayed in the 2nd axis plot using the mesh 

push buttons. The user can select 6 test functions for 

the display with the help of the pop-up menu. In Fig. 

5, we have represented the mesh results, while the 

surf represents the results for the surface. The main 

difference between the surf and the mesh was that 

the mesh results produced a wireframe surface which 

coloured the lines which connected the important 

points, whereas the surf displayed the surface face 

and the lines in colour.  

 

In Fig. 6, we have shown the triangular 

representation of the 3D and the contour for the 6 

test functions. Similar to Fig. 5, the triangular 

representation has been described in the axis 1 with 

the help of 6 push buttons. Also, the contour results 

have been displayed in the 2nd axis plot using the 

contour push buttons. The user can select 6 test 

functions for the display with the help of the pop-up 

menu. The contour plots are represented by the 

matrix Z, wherein the Z-axis was interpreted as the 

height with regards to an x-y plane 

 

 

4.0 CONCLUSION 
 

In this study, we were able to generate a smooth 

surface that involved the estimation of the 

derivatives using the least square minimisation 

method. Furthermore, the Cubic Bezier Triangular 

patch was used as the surface of the Delaunay 

triangulation. The significance of this research, the 

technique to construct smooth surface by using 

Bezier Triangular patch was explained and can be 

use by reference by other researcher. In this study, 

the surface coding was carried out using the MATLAB 

programme (MATLAB, R2015) and was displayed with 

the help of the Graphical User Interface (GUI) 

function of the MATLAB programme as the surf, mesh 

and contour interface for 6 test functions in the 2D (2-

Dimensional) surface. Our results indicated that the 

GUI function in the MATLAB 2015 programme made it 

very easy for the user to show their MATLAB results 

while analysing, interpreting or drawing any 

conclusions from the results. 
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